Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons
نویسنده
چکیده
We report the results of multi-scale modeling of ultra-narrow graphene nanoribbons (GNRs) that combines atomistic non-equilibrium Green’s function (NEGF) approach with semiclassical mobility modeling. The variability of the transport gap and carrier mobility caused by random edge defects is analyzed. We find that the variability increases as the GNR width is downscaled and that even the minimum variation of the total mobility reaches more than 100% compared to average mobility in edge-defected nanoribbons. It is shown that scattering by optical phonons exhibits significantly more variability than the acoustic, line-edge roughness and Coulomb scattering mechanisms. The simulation results demonstrate that sub-5 nm-wide nanoribbons offer no improvement over conventional bulk semiconductors, however, GNRs are comparable with sub-7 nm-thick silicon-on-insulator devices in terms of mobilitybandgap trade-off characteristics. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Disorder-induced variability of transport properties of sub-5 nm-wide graphene nanoribbons
Transport properties of sub-5 nm-wide graphene nanoribbons (GNRs) are investigated by using atomistic non-equilibrium Green’s function (NEGF) simulations and semiclassical mobility simulations of large ensembles of randomly generated nanoribbons. Realistic GNRs with dimensions targeting the 12 nm CMOS node are investigated by accounting for edge defects, vacancies and potential fluctuations. Ef...
متن کاملUltra-narrow metallic armchair graphene nanoribbons
Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, w...
متن کاملRaman Spectroscopy of Graphene Nanoribbons: A Review
In the last few years, several methods have been proposed for the production of ultra-narrow stripes of graphene, called graphene nanoribbons, which could find several applications in nanoand opto-electronics. However, every production method gives rise to different types of ribbons, in terms of structural quality, width, edge pattern, and type of functional groups. In this review, we compare t...
متن کاملEffect of ribbon width on electrical transport properties of graphene nanoribbons
There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanorib...
متن کاملFacile synthesis of high-quality graphene nanoribbons.
Graphene nanoribbons have attracted attention because of their novel electronic and spin transport properties, and also because nanoribbons less than 10 nm wide have a bandgap that can be used to make field-effect transistors. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge. Here, we show that pristine few-layer nanoribbons can be produced by unzippi...
متن کامل